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Cassie's Law and Concavity of Wall Tension with
Respect to Disorder

Franc� ois Dunlop1 and Krzysztof Topolski2

Received August 6, 1999

For the semiinfinite Ising model with quenched boundary disorder, we prove
concavity inequalities for the difference of wall tensions associated with the
minus and plus phases. These inequalities generalize phenomenological
equalities known as Cassie's law.
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1. INTRODUCTION

Consider a plane substrate made of two species `a' and `b'. Let us
model a fluid phase on top of the substrate by a semiinfinite lattice gas or
ferromagnetic Ising model, and represent the interaction of the fluid with
the substrate by a boundary field taking two different values, a where there
is `a', and b where there is `b'.

One is interested in the contact angle % of a sessile drop of liquid,
modelled by the + phase, in equilibrium conditions with its vapour, the
& phase, on the substrate. This angle should obeys Young's equation,
anisotropy taken into account,

cos % {+&&sin %
�

�%
{+&={&W&{+W

where {+& is the interfacial tension, which is a function of the interface
orientation, {&W is the wall tension of the & phase on the wall-substrate W,
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and {+W is the wall tension of the + phase on the same wall-substrate.
The properties of the substrate enter the wall free energies or wall tensions
{+W, {&W and the differential wall tension

2{(W )={&W&{+W

Let us denote 2{(`a') and 2{(`b') the differential wall tensions
associated to pure `a' and pure `b' respectively. Cassie's law(1) gives the
prediction that

2{(W )=ca 2{(`a')+cb 2{(`b') (1)

where ca and cb=1&ca are the relative concentrations of `a' and `b',
whatever the geometrical arrangement of `a' with `b'. This equation
simply states that the differential wall tension for a compound wall is the
weighted average of the pure component quantities. It was proposed by
Cassie on the basis of measurements of contact angles of water droplets on
fabrics.

Equation (1) has been verified to a good approximation by Monte-
Carlo simulations in two dimensions, for ordered or disordered substrates.(2)

It can also be tested against a low-temperature expansion for the Ising
model: for a periodic substrate in two dimensions, one finds agreement up
to order exp(&6;J ), but disagreement at order exp(&8;J ), which may of
course be a very small correction to Cassie's law; this computation, with no
claim to mathematical rigour, is given at the end of the present paper.

Our main result is the following concavity property,

2{(W )�ca 2{(`a')+cb 2{(`b') (2)

which we prove by the method of correlation inequalities, for periodic or
stationary ergodic random substrates, in any dimensions, under the condi-
tion that a�0 and b�0.

Since 2{ is an odd function of the boundary field, inequality (2) reversed
holds when a�0 and b�0. When a�0�b and a+b�0, we expect con-
cavity of 2{ for ca # [0, 1�2], but we prove (2) only for periodic or
Bernoulli distributed substrates with ca=1�n, n # N.

Of course (2) and (1) are compatible. Cassie's law (1) should become
exact in the limit whereby the wall is made from pure patches of `a' and
`b' whose size is much larger than the bulk Ising correlation length.

A general reference for exact results on surface structures and phase
transitions is Abraham.(3)
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2. MODEL AND BASIC RESULT

We consider the d-dimensional Ising model defined on the semiinfinite
lattice L/Zd, L=Zd&1_Z+. The points of L are denoted by i=(i1 ,..., id ),
where ik # Z for k=1,..., d&1 and id # Z+. For each i # L, _i=\1 denotes
an Ising spin. The system of spins _4=[_i ] i # 4 , confined in a box 4

4=[i # L : |ik |�L, k=1,..., d&1, 0�id�M ]

with boundary condition _4c
interacts via the Hamiltonian

H4(J, h, _4c
)(_4)=&1

2 :
i, j # 4

Jij_ i_j& :
i # 4, j # 4c

Jij _i _j& :
i # 4 & W

hi_ i (3)

where W=[i # Zd : id=0] and 4c=L"4. The corresponding partition
function is defined as

Z4(J, h, _4c
)=:

_ 4

exp(&;H4)

This model contains three sets of parameters: J=[Jij ] i, j # 4 ��the set of
coupling constants between spins in L, the boundary condition _4c

and
h=[hi ] i # W��the surface field acting on spins in W.

Our starting point is an inequality for products of four partition
functions Z4(J, h(:), (_(:))4c

), :=1, 2, 3, 4, associated with Hamiltonians
H4(J, h(:), (_(:))4c

) of ferromagnetic type,

(0) for all i, j # L

Jij=Jji�0

with surface fields [h(:)] and boundary conditions (_(:))4c
satisfying

(H) for all i # W

{h (1)
i +h (2)

i �|h (3)
i +h (4)

i |
h (4)

i &h (3)
i �|h (1)

i &h (2)
i |

(B) for all i # 4c

{_ (1)
i +_ (2)

i �|_ (3)
i +_ (4)

i |
_ (4)

i &_ (3)
i �|_ (1)

i &_(2)
i |

Examples of surface fields satisfying (H) are

h(1)
i �0, h (2)

i �0, h (3)
i =0, h (4)

i =h (i)
i +h (2)

i
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or

h (1)
i , h (2)

i such that h (1)
i +h (2)

i �0, h (3)
i =h (1)

i 7 h (2)
i , h (4)

i =h (1)
i 6 h (2)

i

where 7 is min and 6 is max. A slight generalization of the previous two
examples is

h (1)
i , h (2)

i such that h (1)
i +h (2)

i �0,

h (3)
i =

h (1)
i +h (2)

i

2
&=i , h (4)

i =
h (1)

i +h (2)
i

2
+=i

with

=i� }h
(1)
i &h (2)

i

2 }
An example of boundary conditions satisfying (B) is

_ (1)
i =_ (2)

i =1, _ (3)
i =_ (4)

i =&1

Lemma 1. If assumptions (0), (H) and (B) are fulfilled then

`
4

:=1

Z4(J, h(:), (_(:))4c
)� `

4

:=1

Z4(J, &h(:), (_(:))4c
)

Proof. The proof is similar to the proof of the GHS and Lebowitz
inequalities.(4�7) We show that

`
4

:=1

Z4(J, h(:), (_(:))4c
)

has a positive expansion in Jij with i, j # 4, h (1)
i +h (2)

i \(h (3)
i +h (4)

i ) and
h(4)

i &h (3)
i \(h (1)

i &h (2)
i ) with i # W, _ (1)

i +_ (2)
i \(_ (3)

i +_ (4)
i ) and _ (4)

i &_ (3)
i

\(_ (1)
i &_ (2)

i ) with i # 4c. It is therefore larger or equal than

`
4

:=1

Z4(J, &h(:), (_(:))4c
)

which proves the lemma. For this we consider >4
:=1 Z4(J, h(:), (_(:))4c

) as
the partition function associated with a collection of spins (_ (1)

i , _ (2)
i , _ (3)

i ,
_(4)

i ), with the Hamiltonian

H(_(1), _ (2), _(3), _ (4))= :
4

:=1

H4(J, h(:), (_(:))4c
)((_(:))4)
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We then define the transformed variables

'i=
1
2 (_ (1)

i +_ (2)
i &_ (3)

i &_ (4)
i )

;i=
1
2 (_ (1)

i +_ (2)
i +_ (3)

i +_ (4)
i )

#i=
1
2 (_ (1)

i &_ (2)
i +_ (4)

i &_ (3)
i )

$i=
1
2 (&_ (1)

i +_ (2)
i +_ (4)

i &_ (3)
i )

This transformation of variables is orthogonal so

&H(_(1), _(2), _ (3), _ (4))

= 1
2 :

i, j # 4

Jij ('i 'j+;i;j+#i#j+$i $j )

+ :
i # 4, j # 4c

Jij ('i'j+;i; j+#i#j+$i $j )

+ 1
2 :

i # 4 & W

[(h (1)
i +h (2)

i &h (3)
i &h (4)

i ) 'i+(h (1)
i +h (2)

i +h (3)
i +h (4)

i ) ;i

+(h (1)
i &h (2)

i +h (4)
i &h (3)

i ) #i+(&h (1)
i +h (2)

i +h (4)
i &h (3)

i ) $ i ] (4)

This is a polynomial with non-negative coefficients. By expanding the expo-
nential and factoring the resulting sums over the vertices i # 4, the proof
is reduced to showing that for each vertex i and all nonnegative integers
k, l, m and n,

:
'i , ;i , #i , $i

'k
i ; l

i#
m
i $n

i �0 (5)

By the spin flip symmetries corresponding to permutations of the original
(:) index set, the sum (5) can be nonzero only if k+m, k+n, and m+n
are even. By symmetry under global spin flip, the sum (5) can be nonzero
only if k+l+m+n is even. When k, l, m and n are all even the sum (5)
is clearly positive. When k, l, m and n are all odd we have

'k
i ; l

i#
m
i $n

i ='k&1
i ; l&1

i #m&1
i $n&1

i ' i;i#i $i

where 'k&1
i ; l&1

i #m&1
i $n&1

i is positive because k&1, l&1, m&1 and n&1
are all even and 'i;i #i $i=

1
4 (_ (1)

i _ (2)
i &_ (3)

i _ (4)
i )2. Hence the sum (5) is non-

negative.
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3. DIFFERENTIAL WALL TENSION

The differential wall tension for uniform substrates was first studied
mathematically by Abraham(8) and then by Fro� hlich and Pfister.(9, 10) We
shall recall some definitions and results, and prove some complementary
results for random substrates. We consider two Hamiltonians H4(J, h,
(+)4c

) and H4(J, h, (&)4c
) which are different only by the choice of

boundary conditions. The surface field h=[hi ]i # W describes the properties
of the wall. If hi is positive the wall adsorbs preferentially the + phase and
if hi is negative the wall adsorbs preferentially the & phase.

The differential wall tension is first defined in finite volume by the
formula

; 2{4(h)=;{&W
4 (h)&;{+W

4 (h)=&
1

|W & 4|
ln

Z4(J, h, &)
Z4(J, h, +)

(6)

where |W & 4|=(2L+1)d&1 for boxes 4 as defined in Section 2. Then

; 2{(h)= lim
L � �

lim
M � �

; 2{4(h) (7)

whenever the limit exists. Existence of this limit has been proven in
Fro� hlich and Pfister(10) for nearest neighbour interactions, Jij=0 if
|i& j |>1, and uniform h. The method also applies to periodic h. For
random h, we can prove existence and self-averaging of the differential wall
tension only under the hypothesis that the random boundary field is
positive:

Proposition 1. Let Jij be a translation invariant ferromagnetic
finite range coupling: Jij=J(i& j)�0 and, for some r, J(k)=0 whenever
|k|>r. Let [hi ]i # Zd&1 , be a stationary ergodic non-negative random field,
such that Eh1<�. Then 2{ is selfaveraging, namely it is uniquely defined
by (7) and is almost surely equal to its average, 2{(h)=E 2{ almost surely.

Proof. Definition (6) can be written as(10, 2)

; 2{4(h)=
1

(2L+1)d&1 ln �exp \&2; :
i # W & 4

hi_ i+�4, h, +

(8)

For simplicity of notation, we now take d=2 and range r=1. The proof
works in the same way in higher dimension and for any finite range. Let
for k, n # N

4k, n=[i # L : k�i1�n, 0�i2]
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For arbitrary fixed k and n, setting to +1 all the spins in 40, k & 4k, n is an
increasing function; the observable in the brackets in (8) is a decreasing
function of the spins because hi�0; therefore by the FKG inequality,

�exp \&2; :
W & 40, n

hi _i+�40, n , h, +

��exp \&2; :
W & 40, n

hi_ i+�40, n , h, +, _40, k & 4k, n=+1

=exp(&2;hk) } �exp \&2; :
W & 40, k&1

hi_i+�40, k&1 , h, +

} �exp \&2; :
W & 4k+1, n

h i_i+�4k+1, n , h, +

which gives

(n+1) 2{40, n
(h)�2hk+k 2{40, k&1

(h)+(n&k) 2{4k+1, n
(h)

or

h&1+(n+1) 2{40, n
+hn+1

�h&1+k 2{40, k&1
+hk+hk+(n&k) 2{4k+1, n

+hn+1 (9)

let us define X0, 0=0 and for k�n&1

Xk, n=(n&k&1) 2{4k+1, n&1
(h)+hk+hn

Then (9) becomes

X&1, n+1�X&1, k+Xk, n+1 \k�n

or, given translation invariance,

X0, n�X0, k+Xk, n \k�n

From Proposition 2 below, 2{4k, n
and therefore also Xk, n are positive. Now

because the sequence [hi ] i # Z is stationary and ergodic so on the basis of
Proposition 6.6 of Breiman(11) the sequence [X(n&1) k, nk , n�1] is station-
ary and ergodic for all k�1. Moreover from the assumption Eh1<�, we
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have that EX0, n<�, so applying the subergodic theorem (Theorem 2.6), (12)

to this sequence we have that the limit

X�= lim
n � �

X0, n

n

exists a.s. and X�=EX�=limn � � E[X0, n �n]. This and the definition of
X0, n imply that 2{(h) is self-averaging, which concludes the proof of
Proposition 1.

Proposition 2. The differential wall tension 2{4(h) is an increas-
ing function of h, i.e., hi�h$i \i O 2{4(h)�2{4(h$). It is an odd function
of h, 2{4(&h)=&2{4(h). If h is Bernoulli, hi=a with probability p and
hi=b>a with probability 1& p, then E 2{4(h) is a decreasing function
of p. If h is distributed according to a probability measure + and h$ accord-
ing to +$, and if +�+$ in the FKG sense, then

E 2{4=| d+(h) 2{4(h)�| d+$(h$) 2{4(h$)=E$ 2{4

Proof. We shall use the following representation:

; 2{4(h)=
1

(2L+1)d&1 ln �exp \2; :
i # 4, j # 4c

Jij_ i+�4, h, &

(10)

This representation is less natural than (8), the normalization by
1�(2L+1)d&1 is not very transparent, but it has advantages for using the
FKG correlation inequalities. It follows from

Z4(J, h, +)
Z4(J, h, &)

=�exp \2; :
i # 4, j # 4c

Jij_ i+�4, h, &

(11)

where ( } ) 4, h, & is the expectation with respect to the Gibbs measure
generated by Hamiltonian (1) with & boundary condition. The FKG
inequality implies that (11) is an increasing function of h, so that the
differential wall tension (7) is also an increasing function of h.

The second part of the proposition follows easily by considering the
case hi=ai with probability pi and h i=bi>ai with probability 1& pi , and
varying one pi at a time. The last part follows from the definition of the
FKG ordering of measures.(13)
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4. CONCAVITY INEQUALITIES

Lemma 2. Let J and [h(:)]4
:=1 obey (0) and (H). Then for any 4

2{4(h(1))+2{4(h(2))�2{4(h(3))+2{4(h(4))

Proof. Assumption (B) is fulfilled in particular for (_(:))4c
defined as

+ boundary condition for (_(1))4c
, (_(2))4c

, and as & boundary condition
for (_(3))4c

, (_(4))4c
. From Lemma 1 we get

Z4(J, h(1), +) Z4(J, h(2), +) Z4(J, h(3), &) Z4(J, h (4), &)

�Z4(J, &h(1), +) Z4(J, &h(2), +) Z4(J, &h(3), &) Z4(J, &h(4), &)

By the spin flip symmetry,

Z4(J, &h(1), +) Z4(J, &h(2), +)=Z4(J, h(1), &) Z4(J, h(2), &)

and

Z4(J, &h(3), &) Z4(J, &h(4), &)=Z4(J, h(3), +) Z4(J, h(4), +)

so

Z4(J, h(1), +) Z4(J, h (2), +)
Z4(J, h(1), &) Z4(J, h(2), &)

�
Z4(J, h(3), +) Z4(J, h(4), +)
Z4(J, h(3), &) Z4(J, h(4), &)

(12)

Taking logarithms and multiplying by (2L+1)&d+1 yields Lemma 2.

Proposition 3. (9, 10) The differential wall tension of a homoge-
neous substrate, 2{(h), is a concave function of h # [0, �).

Proof. Let =>0, then h (1)
i =h (2)

i =h, h (3)
i =h&=, h (4)

i =h+= \i obey
(H), and Lemma 2 gives

2 2{(h)�2{(h&=)+2{(h+=)

which implies concavity.
Let us now consider the simplest compound wall, namely a checker-

board wall defined as

h (1)
i ={a

b
if |i | even
if |i | odd

h (2)
i ={b

a
if |i | even
if |i | odd
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where |i |=�d&1
k=1 ik . Let us assume a�b and a+b�0. Let h (3)

i =a and
h(4)

i =b \i. For such h (1), h(2), h(3) and h(4) assumption (H) is fulfilled, and
Lemma 2 gives

2{(h(1))+2{(h(2))�2{(`a')+2{(`b')

or, taking into account that 2{(h(1))=2{(h(2))

2{(h(1))� 1
2 2{(`a')+ 1

2 2{(`b')

For general periodic patterns, the picture is clear when a, b�0, but
not so clear when a<0<b:

Theorem 1. Let a<b, a+b�0, and let h=hi1 ,...id&1
be a periodic

function of i1 ,...id&1 , taking values a or b. Let f be the relative frequency
of occurrence of a. Assume at least one of the following conditions:

(p1): a�0

(p2): f =1�2 and 2{(h)=2{(a+b&h), where (a+b&h) i=a+b&hi

(p3): there exists a finite sequence of shifts on the lattice, T1 , T2 ,..., Tn ,
such that h 7 T1h 7 } } } 7 Tn h=a, and \k=1,..., n, (h 7 T1h 7 } } } 7
Tk&1h) 7 Tk h=b

Then the differential wall tension 2{(h) obeys

2{(h)� f 2{(`a')+(1& f ) 2{(`b')

Examples. An example for (p2) or (p3) is the checkerboard con-
sidered above. Another example for (p2) is baabba of period 6, where
2{(h)=2{(a+b&h) comes from the mirror symmetry of the Ising model.
More examples for (p3) in one dimension are obtained from a cell abb } } } b
(period n), with Tk the shift by k units. Examples which do not fall inside
our hypotheses would be aabbb (period 5) or aaabbabb (period 8 and
f =1�2) with a<0.

Proof with (p1). Let h(1)=h and let h(2) be its image under a unit
shift, e.g., h (2)

i1 ,..., id&1
=h (1)

i1&1,...id&1
. Let h (3)

i =h (1)
i 7 h (2)

i , h (4)
i =h (1)

i 6 h (2)
i . Then,

from Lemma 2 with 2{(h(2))=2{(h(1)),

2{(h(1))� 1
2 2{(h(3))+ 1

2 2{(h(4))

If we iterate this procedure n times, always with the same shift, we get a
convex combination of 2n terms. The surface field of one of these terms is
labelled by a walk of length n, with step labels taking value (3) or (4). At
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each step, the fraction of a's increases if the label is (3), or decreases if the
label is (4), by a non-vanishing amount, unless the preceding surface field
was invariant under the shift, in which case it remains invariant. This ran-
dom walk is thus absorbed by the two boundaries, after an average number
of iterations of the order of at most the square of the corresponding period.
Applying the procedure in each direction and taking suitable limits, noting
that at each step we had a convex combination, we get

2{(h)�c 2{(`a')+(1&c) 2{(`b')

and there remains to prove c= f. This follows from the following conserva-
tion law: when applying Lemma 1, at any given step, let f (1)= f (2), f (3) and
f (4) be the corresponding frequencies of a. Then f (1)= 1

2 f (3)+ 1
2 f (4). There-

fore at the end

f =cf `a'+(1&c) f `b'=c

because f `a'=1 and f `b'=0.

Proof with (p2). Essentially the same as the checkerboard example
given before Theorem 1.

Proof with (p3). Lemma 2 gives

2{(h)+2{(T1 h)�2{(h 7 T1h)+2{(b)

2{(h 7 T1h)+2{(T2 h)�2{(h 7 T1h 7T2 h)+2{(b)

b

2{(h 7 T1 h 7 } } } 7 Tn&1h)+2{(Tn h)�2{(a)+2{(b)

Summing up and using 2{(Ti h)=2{(h) gives

2{(h)�
1

n+1
2{(a)+

n
n+1

2{(b)

which is the required result. Indeed f =1�(n+1) by the same argument as
in the proof with (p1).

Let us now turn to the random case. Let [hi ]i # Zd&1 be a stationary
ergodic random field, let [Yn]�

1 be a sequence of 0�1 valued i.i.d. random
variables and let [:n]�

1 be a sequence of i.i.d. random variables taking
value in the set [e1 , e2 ,..., ed&1] of basis vectors of Zd&1, all defined on a
common probability space (0, B, P). Assume that the field and sequences
are independent and that P[h1=a]= p, P[h1=b]=1& p, P[Y1=0]=
P[Y1=1]= 1

2 and P[:1=e1]= } } } =P[:1=ed&1]=1�(d&1).
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Denote by X (n)
k , k # Zd&1, n # N the random variables defined by

X (0)
k =hk and by the recurrence relation

X (n)
k =Yn(X (n&1)

k 7 X (n&1)
k+:n

)+(1&Yn)(X (n&1)
k 6X (n&1)

k+:n
)

Let [X(n)]�
n=1 be the sequence of random elements of the space RZd&1

defined as X(n)=[X (n)
k ]k # Zd&1 . The definition is such that X(n) is for

each n a stationary, ergodic random field, such that P[X (n)
k =a]= p,

P[X (n)
k =b]=1& p.
Let X denote the random element of the space RZd&1

such that
P[X=a]= p and P[X=b]=1& p where a and b are the constant fields
of value a and b respectively.

Lemma 3. The sequence [X(n)]�
1 , as a sequence of random

elements in the space RZd&1
, is convergent in distribution to the random

element X.

Proof. First we notice that the sequence [X(n)]�
1 is tight so from

Prohorov theorem (Theorem 6.1) (14) we have that each subsequence of this
sequence contains a subsequence convergent in distribution. For the proof
it is enough to show that all convergent subsequences are convergent to the
common limit.

Let us first give the proof in dimension d=2. For x1 , x2 ,..., xl # [a, b],
let

pn(x1 x2 } } } x l)=P[X (n)
k+1=x1 , X (n)

k+2=x2 ,..., X (n)
k+l=xl]

As a simple consequence of the definition of [X(n)] we have

pn+1(ab)= 1
2 pn(aab)+ 1

2 pn(abb) (13)

which gives

pn+1(ab)� 1
2 [ pn(aab)+ pn(abb)]+ 1

2 [ pn(aba)+ pn(bab)]= pn(ab)

The sequence [ pn(ab)]�
1 is decreasing and bounded so the limit

limn � � pn(ab)= p(ab) exists. Now adding side by side the equalities

pn(ab)= pn(aab)+ pn(bab)

pn(ab)= pn(abb)+ pn(aba)

and using (13) we get

pn(ab)= 1
2 [ pn(bab)+ pn(aba)]+ pn+1(ab)
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which as a consequence gives us

lim
n � �

pn(bab)=0

lim
n � �

pn(aba)=0

Denote p (k)
n = pn(ba } } } a

k

b) and observe that

p (k)
n+1� 1

2 p (k+1)
n

Now by induction we conclude that for all k # N

lim
n � �

p (k)
n = p(k)=0

which gives us that

lim
n � �

pn(ab)= p(ab)= :
�

k=1

p(k)=0

We have used stationarity, giving us that k=� has zero weight. To
observe this let us notice that if X is limit in distribution of a convergent
subsequence of the sequence [X(n)]�

n=1 then X, as a limit of stationary
sequences, is stationary. From this, denoting

Ak=[|: Xi (|)=b \i<k and Xk(|)=a]

we have

P[Ak]=P[Ak+1]

Let

A=[|: _k such that Xk(|)=b and \i<k Xi (|)=a]

then A=�k # Z Ak and p (�)=P[A].
Because Ak & Al=< for k{l, we have

p(�)=P[A]= :
k # Z

P[Ak]=0

In a similar way we get

lim
n � �

pn(ba)= p(ba)=0
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This means that if X is limit in distribution of a convergent subsequence
of the sequence [X(n)]�

n=1 then X is distributed on constant sequences
a=[a]k # Zd&1 and b=[b]k # Zd&1 . Furthermore we have that P[X=a]= p,
P[X=b]=1& p. This concludes the proof of the lemma for d=2.

Let us now consider d=3, and define

pn(x1x2 } } } x l)=P[X (n)
k+e1

=x1 , X (n)
k+2e1

=x2 ,..., X (n)
k+le1

=xl]

pn \
x1

x2

} } }
xm
+=P[X (n)

k+e2
=x1 , X (n)

k+2e2
=x2 ,..., X (n)

k+me2
=xm]

x11 } } } xl1

pn \ } } } +=P[X (n)
k+e1+e2

=x11 ,..., X (n)
k+le1+me2

=xlm]
x1m } } } xlm

Then

pn+1(ab)=
1
2

pn+1(ab | :n+1=e1)+
1
2

pn+1(ab | :n+1=e2)

pn+1(ab | :n+1=e1)=
1
2

pn(abb)+
1
2

pn(aab)

pn+1(ab | :n+1=e2)= pn \ab
ab++

1
2

pn \aa
ab++

1
2

pn \bb
ab+

+
1
2

pn \ab
aa++

1
2

pn \ab
bb+

= pn \ab
ab++ pn \aa

ab++ pn \bb
ab+= pn(ab)& pn \ba

ab+
giving

pn+1(ab)=
1
4

pn(aab)+
1
4

pn(abb)+
1
2

pn(ab)&
1
2

pn \ab
ba+

= pn(ab)&
1
4

pn(aba)&
1
4

pn(bab)&
1
2

pn \ab
ba+
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which implies that limn � � pn(ab)= p(ab) exists and that

lim
n � �

pn(aba)= lim
n � �

pn(bab)= lim
n � �

pn \ab
ba+=0

Next we observe that using the same notation as in the d=2 case we have

p (k)
n+1� 1

4 p (k+1)
n

and by induction we conclude that for all k # N

lim
n � �

p (k)
n = p(k)=0

which gives us, in a similar way as for d=2, that

lim
n � �

pn(ab)= p(ab)=0

and

lim
n � �

pn(ba)= p(ba)=0

By symmetry

lim
n � �

pn \a
b+= lim

n � �
pn \b

a+=0

Therefore the limit is distributed on pure a's or pure b's.
By Lemma 2 and Lemma 3 we get the following.

Theorem 2. Let 0�a<b, and let h=[hk]k # Zd&1 be a stationary
ergodic random field taking values a and b, with probability p and (1& p),
respectively. Then

2{(h)�p 2{(`a')+(1& p) 2{(`b')

Proof. For simplicity of notation, we consider the d=2 case. The
proof works in the same way in higher dimension. From Lemma 2 for fixed
h(|) we have

2{4(h(|))+2{4(T h(|))�2{4(h(|) 6T h(|))+2{4(h(|) 7 T h(|))

Observe that the last inequality may be written as

1
2 [2{4(h(|))+2{4(T h(|))]�Eh(|) 2{4(X(1))
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where Eh(|) denotes that expectation is taken for X(1) with initial condition
h(|). Iterating the last inequality n times we get

1
2n :

n

i=0
\n

i+ 2{4(T ih(|))�Eh(|) 2{4(X(n)) (14)

Taking expectation of both sides of inequality (14) we get that for all n�1

E 2{4(h)�E 2{4(X(n)) (15)

From Lemma 3 we know that X(n) w�D X, as n � �. Hence from
Theorem 5.1 of Billingsley(14) we conclude that

2{4(X(n)) w�D 2{4(X), as n � �

Now because from Proposition 2 we have that 2{4(X(n))�2{4(`b') we
may apply Theorem 5.4 of Billingsley(14) to get

lim
n � �

E 2{4(X(n))=E 2{4(X)= p 2{4(`a')+(1& p) 2{4(`b') (16)

The last equality follows from the form of the distribution of X. From (15)
and (16) we get

E 2{4(h)�p 2{4(`a')+(1& p) 2{4(`b') (17)

Now in order to complete the proof we use Proposition 1 and take the
thermodynamic limit in of both sides of (17) to obtain

2{(h)�p 2{(`a')+(1& p) 2{(`b')

which ends the proof of Theorem 2 for d=2. In the case d>2 the proof of
Theorem 2 is similar: Let Tk denotes the shift in the ek direction defined for
x=[xi ] i # Zd&1 as

Tk(x)=[xi+ek
]i # Zd&1

From Lemma 2 for fixed h(|) we have

:
d&1

k=1

[2{4(h(|))+2{4(Tk h(|))]

� :
d&1

k=1

[2{4(h(|) 6 Tkh(|))+2{4(h(|) 7 Tkh(|))]

The rest of the proof is the same as for d=2.
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Theorem 3. Let a<b, a+b>0, and let hi , i # Zd&1, be i.i.d.
variables taking value a with probability p and value b with probability
1& p. Then

(i) if a�0, then the differential wall tension is a concave function of
p # [0, 1],

(ii) if a<0, then

2{4 \1
n+�

1
n

2{4(`a')+
n&1

n
2{4(`b'), n # N

Proof (i). Let h(1) and h(1$) be drawn independently from the same
Bernoulli distribution, at concentration p of a's. For any = such that
0�=�p& p2, let =i , i # Zd&1, be i.i.d. variables taking value 1 with prob-
ability = and value 0 with probability 1&=. Let h(2), h(3) and h(4) be defined
by

h (2)
i =(1&=i ) h (1)

i +=ih (1$)
i

h (3)
i =h (1)

i 7 h (2)
i

h (4)
i =h (1)

i 6 h (2)
i

Then h(1), h(2), h (3), h(4) obey conditions (H), and Lemma 2 gives

2{(h(1))+2{(h(2))�2{(h(3))+2{(h(4))

On the other hand,

h (3)
i ={a with probability p+=( p& p2)

b with probability (1& p)&=( p& p2)

h (4)
i ={a with probability p&=( p& p2)

b with probability (1& p)+=( p& p2)

We thus have

2{( p)� 1
2 2{( p+=( p& p2))+ 1

2 2{( p&=( p& p2))

which, together with monotonicity of 2{( p), implies the announced con-
cavity property.

Proof (ii). When a<0, we cannot start from independent h(1) and
h(2) because condition (H) requires h (1)

i +h (2)
i �0 \i. Suppose h(1) follows

a Bernoulli distribution with concentration p1 of a and 1& p1 of b, and
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similarly h(2) with concentration p2 of a and 1& p2 of b. Let p1+ p2�1.
Then we can prove

2{4( p1)+2{4( p2)�2{4( p1+ p2)+2{4(`b') (18)

Indeed let 'i , i # Zd&1, be i.i.d. variables taking value 0 with probability
q= p2�(1& p1) and value 1 with probability 1&q. Then we may write, in
law,

h(2)
i =a+b&h (1)

i +' i (h (1)
i &a)

Moreover h(1)
i +h (2)

i �0. Let

h (3)
i =h (1)

i 7h (2)
i

h (4)
i =h (1)

i 6h (2)
i

Then Lemma 2 applies and gives (18), which can then be applied as
follows:

22{ \1
n+�2{ \2

n++2{(b)

2{ \2
n++2{ \1

n+�2{ \3
n++2{(b)

b

2{ \n&1
n ++2{ \1

n+�2{(a)+2{(b)

Summing up gives

2{ \1
n+�

1
n

2{(a)+
n&1

n
2{(b)

which concludes the proof of Theorem 3.
We expect that concavity should hold for p # (0, 1�2), and even in a

larger interval depending upon a and b, e.g., a condition like pa+(1& p) b�0.

5. STRICT CONCAVITY: LOW TEMPERATURE EXPANSION

At low enough temperature, differential wall tensions can be estimated
by a low-temperature expansion. Remainders can in principle be controlled
rigorously, as was done to bound the point of wetting transition(15) or to
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study rough substrates.(16) Here we do only the formal expansion, up to
order exp(&8;J ).

Let us consider again the checkerboard wall, now with a=0 and
b=h>0:

h (1)
i ={h if |i | odd

0 if |i | even
h (2)

i ={0 if |i | odd
h if |i | even

Then h(3)=h(1) 7 h(2)=0 and h (4)=h(1) 6 h(2)=h. Let 2{(h) denote the
differential wall tension for the pure h wall. Of course 2{(0)=0, so that
Theorem 1 gives

2{(h(1))=2{(h(2))� 1
2 2{(h)

In order to show strict concavity, we now expand the two differential
wall tensions in powers of exp(&;J ). Let ;J>>1 and J>>h>0. For sim-
plicity of notation we do the computation in two dimensions. First

; 2{(h)=2;h+exp(&6;J+2;J )+exp(&6;J&2;h)&exp(&8;J+4;h)

+exp(&8;J&4;h)+O(exp(&10;J+4;h)) (19)

Then

; 2{(h(1))=;h& 1
2 exp(&6;J+2;h)+ 1

2 exp(&6;J&2;h)

+O(exp(&10;J+4;h))

The point is that an excitation made of two neighboring Ising spins along
an alternate +& wall has the same weight in the + phase and the &
phase, and therefore does not contribute to the differential wall tension.
Therefore

; 2{(h(1))= 1
2 ; 2{(h)+ 1

2 exp(&8;J+4;h)& 1
2 exp(&8;J&4;h)

+O(exp(&10;J+4;h))

> 1
2 ; 2{(h) (20)

which is strict concavity.
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